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In this paper, we define flux, mass, density, and accumulation functions for the diffusion-limited aggre-
gation (DLA) simulation. We assume time rescalings for each of these functions and for the radii that
bring each of the graphs of these functions, separately, onto a curve that does not depend on time. We
show, by comparison with DLA simulations in two and three dimensions, that this rescaling is appropri-
ate. We use this rescaling to derive several partial differential equations involving the aforementioned
functions, and to guide us in choosing analytic expressions that describe these functions.

PACS number(s): 05.70.Ln, 05.40.+j, 61.43.Bn, 61.43.Hv

L. INTRODUCTION

Many irreversible growth processes produce figures
that are highly branched and complicated. A simulation
that is believed to model many such physical systems is
the diffusion-limited aggregation (DLA) simulation ori-
ginated by Witten and Sander [1,2]. In the two-
dimensional (2D) off-lattice DLA simulation, one releases
a random walker (in our case, represented by a
mathematical point) from the circumference of a large
circle centered on a seed particle. If the walker returns to
the circle, one starts another walker from the circle. If
the walker comes within some designated capture dis-
tance r, of the seed, it remains there, and another walker
is released from the circle. This walker is again allowed
to wander until it comes within r, of either of the parti-
cles of the aggregate. This process continues until a
predetermined size of the cluster has been achieved. This
simulation has been used to model viscous fingering
[3-10], crystal growth [5,11-13], electrochemical depo-
sition [14-18], and the growth of bacterial colonies
[19-22]. The similarity of the figures produced by the
DLA simulation to these physical systems indicates that
they have some aspects of their growth mechanisms in
common. Since the probability that a walker lands on
the boundary of the aggregate is proportional to the gra-
dient of the solution to Laplace’s equation, for which the
potential takes on constant boundary values on the aggre-
gate and on the circle, analysis of these simulations has
involved treatment of fractal growth in terms of solutions
to Laplace’s equation [2,23].

One property that has received particular attention in
the literature on growth and aggregation is the fractal di-
mension. Honda et al. [24,25] consider the way in
which the “interior region” (the region that obeys the fa-
miliar fractal scaling of the aggregate) must evolve to
derive a formula for the fractal dimension of DLA in any
dimension greater than or equal to one. They make the
assumption that growth continues at all radii for all
times. Although we believe that this assumption is not
appropriate for the DLA simulation, we feel that they
take an insightful approach that warrants further devel-
opment. In particular, they define a radial density profile
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that depends on time.

Plischke and Racz [26] developed the concept of the
density profile and computed the rate of change of that
function with number of particles. We will later define
this rate to be the accumulation function. The active re-
gion, where the accumulation is nonzero, was considered.
They showed that two characteristic lengths come into
play (the width and the position of the maximum of the
Gaussian shaped accumulation rate). We look deeper
into the relationships between this and other distributions
that characterize the DLA simulation.

We believe that an analytical expression for the radial
density profile as a function of time ¢ and distance r from
the seed can be found. From this expression, one would
not only obtain the fractal dimension of the aggregate,
but also be able to determine the rate of accumulation at
all radii.

II. DEFINITIONS

The mass function M is defined as the total number of
aggregated particles within a radius r of the seed particle.
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FIG. 1. 2D mass function for the DLA simulation. (a) is the
simulated mass function M, computed by averaging 500 DLA
figures. Each line represents an interval of 500 particles. The
total number of walkers on each figure is 2500. (b) is obtained
by rescaling the mass and radius with time.
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3D mass function
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FIG. 2. 3D mass function for the DLA simulation. (a) is the
simulated mass function M. (b) is obtained by rescaling the
mass and radius with time.

The radius 7 is a dimensionless variable measured in units
of the capture distance r,. The fractal dimension D of
DLA that is most commonly computed is the slope of the
In(M) vs In(r) plot for an aggregate which has been
grown by the DLA algorithm. The fractal dimension for
the DLA simulation has been determined from extremely
large simulations to be approximately 1.71 [27] in two di-
mensions, and 2.49 [28] in three dimensions. For simpli-
city of discussion, we regard the definition of M to in-
clude dependence on a dimensionless (fictitious) “time” ¢
by regarding each newly added particle to correspond to
a fixed time interval At. Thus, M (r,t) is defined as the
number of particles on the aggregate which are within a
radius r after (¢/At) particles have been added to the
figure. M (r,t) is shown for an actual DLA simulation in
two dimensions in Fig. 1(a), and in three dimensions in
Fig. 2(a) as a function of r for five different times. These
figures and the next six, which result from actual DLA
simulations, are based on the average of 500 two and
three dimensional off-lattice DL A simulations at five time
intervals corresponding to 500 particles per interval
(At=1/500). Although ¢ is a discrete variable, we as-

2D density function
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FIG. 3. 2D density function for the DLA simulation. (a) is
the simulated density function p. (b) is obtained by rescaling the
density and radius with time.
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FIG. 4. 3D density function for the DLA simulation. (a) is
the simulated density function p. (b) is obtained by rescaling the
density and radius with time.

sume that there is such a large number of added particles
between observations that time can be treated as continu-
ous.
The density function is defined in terms of M to be
oM (r,t)
)= — 1

plr,t) ar (1)
In other words, p(r,t)dr is the number of particles con-
tained within a shell between r and r +dr at time ¢t. This
is shown for an actual DLA simulation in Fig. 3(a) and
4(a). The density function is simply ) times the average
density of accumulated particles at radius r, where
Q=27r in two dimensions, and Q@ =47r2 in three. The
flux function is defined to be

q,(,,t)::_@M_(r’_t)_ , 2)

at

so that ®(r,t)dt is the total number of particles that are
accumulated within a circle of radius 7 in a time interval
between t and t+dt. The function ®(r,t) is plotted for
actual DLA simulations in Fig. 5(a) and 6(a). Notice that
the density function and the flux function can be related

2D flux function
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FIG. 5. 2D Flux function for the DLA simulation. (a) is the
simulated flux function ®. (b) is obtained by rescaling the ra-
dius with time.
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3D flux function
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FIG. 6. 3D flux function for the DLA simulation. (a) is the
simulated flux function ®. (b) is obtained by rescaling the ra-
dius with time.

2D accumulation function

FIG. 7. 2D accumulation function for the DLA simulation.
(a) is the simulated accumulation function 4. (b) is obtained by
rescaling the accumulation and radius with time.
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FIG. 8. 3D accumulation function for the DLA simulation.
(a) is the simulated accumulation function 4. (b) is obtained by

rescaling the accumulation and radius with time.

through their derivatives:

dp(r,t) _ aP(rt)
ot or
Each of these derivatives is simply the mixed partial

derivative of M with respect to r and ¢, which we define
to be the accumulation function

(3)

Alr,t):= . (4)

This is an expression for the rate of accumulation of par-
ticles at the distance r from the seed particle at time z.
This quantity is plotted for actual simulations in Figs.
7(a) and 8(a). The function A (r,t) is proportional to the
probability that a walker which is released at time ¢ lands
on the figure at a distance 7 from the seed. A4 and & are
obtained from time derivatives of p and M, respectively,
and since p and M are determined from the instantaneous
shape of the aggregate, 4 and ® characterize the dynam-
ics of the simulation.

III. RESCALED FUNCTIONS

For ease of discussion, we define three different regions
of the growing cluster: the region inside the growing
cluster that is shielded by the outer branches of the clus-
ter and has essentially stopped growing is called the inert
region; the portion of the cluster where nearly all of the
growth occurs [where A4 (r,¢)70] is called the active re-
gion; and the region outside of the maximum extent of
the growing cluster is called the outer region.

We assume that we can rescale M (r,t) and r with time
t in such a way that the rescaled M, which we call M(x),
is independent of time. Since, in the outer region of the
growing aggregate, M is increasing linearly with time, we
must scale M by ¢. If we also assume that in the inert re-
gion M ~rP, where D is the fractal dimension of the
figure, then M /t ~(r/t'?)P, so we must scale r by +!/2.
We therefore define

1/D
M(x):=——M(Xtt ,t)

(5a)
where x =r/t'/P. We compare our expected rescaling
with a rescaling of the actual simulation results, where we
have chosen D =1.71 in two dimensions, and D =2.49 in
three dimensions [28]. We plot M in Figs. 1(b) and 2(b).
Observe that M collapses to one curve upon rescaling. If
we take derivatives of Eq. (5a) with respect to r and ¢, and
extract the parts that are independent of time, we find re-
scalings for p, ®, and A, each of which we expect to be
independent of time:

o= B 10, 10, (50
5(x):=ﬂ—%%=®(xtlln,t) , (5¢)
I(x):=‘2—i’=A(xz1/D,t)tVD. (5d)

The function 7 is plotted in Figs. 3(b) and 4(b), P is plot-
ted in Figs. 5(b) and 6(b) and A is plotted in Figs. 7(b) and
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8(b). Note that the first two plots in the figures for the
DLA simulations do not align perfectly with the ones
representing later times. We believe this is due to the fact
that the initial condition, an isolated seed, is a great
departure from the asymptotic behavior that occurs later.
This initial condition gives rise to a transient that affects
the data at early times. It can be argued that this depar-
ture signals multifractal behavior, but we contend that
the data representing later times rescales appropriately.

IV. ANALYTICAL FORMS FOR THE FUNCTIONS
By substitution from Eq. (5), we find

r

M=ot +
D

p. (6)

By taking a derivative of Eq. (6) with respect to ¢ and us-
ing Eq. (3), we obtain
@ __ ra@

3t Dt or ’ 7

which is simply a first order linear homogenous partial
differential equation for ¢. By the method of characteris-
tics [29], the general solution of Eq. (7) is that ® is an ar-
bitrary function of x =r/t'/P?; in fact, by Eq. (5¢) this
function is just ®(x).

We know from the definition of ® that it is constant in
the outer region, and from the definition of the inert re-
gion, we know that ® is essentially zero there. Therefore,
to represent approximately the results of the simulations,
we choose a function of x that is constant when x is large
and is zero when x is small and undergoes a transition be-
tween the two regions; we then substitute the variable
r/t'/? for the variable x in that function. An appropriate
choice is

(r/tl/D)_xo

1+erf = , 8)
r Ve (

D(r,1) e
)=——
v, 2

where x,;, ® , and € are parameters, and erf(x) is the fa-
miliar error function [30]. Equation (8) is plotted in Fig.
9(a) for five different times. We have chosen D =1.71 for
Fig. 9, corresponding to the two-dimensional case. Nu-
merically integrating Eq. (8) with respect to ¢ to obtain
M, we produce the result shown in Fig. 9(b). We then
determine p by substituting M and ® into Eq. (6). The
result is shown in Fig. 9(c). By taking a derivative of Eq.
(8) with respect to r, the accumulation function becomes

[(r/tl/D)_xo]Z

A(r,t)= Py

exp | — , (9)

which is shown in Fig. 9(d). The Gaussian form for a fit
to A was also used by Plischke and Racz in [26].

Note that the fractal dimension D that we used to plot
these expressions was determined from analysis of an ac-
tual simulation in two dimensions, and not derived here.
The analysis presented here is true in any integer dimen-
sion, provided we satisfy two assumptions: (1) there must
exist a time rescaling of the functions that we introduced,

calculated functions
P M

FIG. 9. Approximate functions for two dimensions. (a) is the
calculated flux function that is determined from application of a
rescaling to the definition of the flux function. (b) is the mass
function, (c) the density function, and (d) the accumulation
function. (a) is a best fit to an error function, [see Eq. (8)] and
(b)—(d) are determined from Egs. (5). The various lines corre-
spond to five consecutive 500 particle intervals.

and (2) M must obey a power law dependence of the form
M ~r? in the inert region with D as a parameter,

V. INTERPRETATION OF THE ACCUMULATION
FUNCTION

We now take a closer look at the accumulation func-
tion. Again, by manipulation of Eq. (5), we can write

A(r,t)=a® , (10)
in which
9 D—1
Came P/
a:= 3 (11)
- 5 Y
or

plays the role of an accumulation coefficient. The accu-
mulation coefficient is the probability that a walker that
wanders through the hypersphere of radius r actually
sticks there. If one formulated a physical problem in
such a way that the accumulation rate can be expressed
in this way, then one could find a mapping between the
DLA simulation and the physical system.
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Observe that the accumulation coefficient does not de-
pend explicitly on time, only implicitly through M and p.
If we sought a nonlinear relationship between 4 and @,
this would not be the case. M and p, as we mentioned be-
fore, characterize the static shape, and not the dynamics
of the growth. If we stopped the simulation and exam-
ined the shape, we could compute a for that
configuration. Substituting Eq. (6) into the definition of a
we find

(D —1)p—r(8p/0r)
DM —rp ’

If one carefully considers the DLA simulation algorithm,
one can interpret this expression for a in terms of the
number of sites available for attachment at radius . The
first term in the numerator is proportional to the total
number of sites at radius r that belong to the aggregate.
To determine the total number of sites available for at-
tachment, we must subtract the second term in the
numerator. This term accounts for the occupied sites
that are just outside of those at radius r and that shield
the sticking sites at ». The denominator is simply the in-
tegral from O to r of the numerator. The denominator
normalizes a with respect to the total number of landing
sites within r. For example, imagine very few landing
sites on the aggregate inside of ». Then a would have to
be correspondingly large, since ® is defined as the total
rate at which particles land within radius . The fact that
® and a are defined in terms of properties of the growing
aggregate within r has an interpretation in which @ is
analogous to an electrostatic flux on a shell of radius .
Borrowing from electrostatics, we can imagine the ag-
gregate to be a perfect conductor that is held at a poten-
tial that differs from that of the starting circle. The flux
function ®(r,t) is proportional to the total electrostatic
flux passing through a circular shell located at radius 7,
and is therefore proportional to the total charge con-
tained within that shell, which is known from Gauss’ law.

o= (12)

Continuing with this analogy, A dr is directly propor-
tional to the amount of charge on the conducting aggre-
gate that resides on a shell of thickness dr at a distance r
from the seed. Since the interior of the aggregate is
shielded by the branches from any potential gradients,
one finds that there is no “charge” on the surface of the
aggregate in the interior region.

V. DISCUSSION

The goal of much of the research in the study of figures
produced from the DLA simulation is to determine the
value of the fractal dimension D. To do this, one must
account for the dynamical processes of random walk and
for the interaction of these processes with the boundary
of a complex aggregate. The mass and density functions
are determined from the instantaneous shape of the ag-
gregate, and the flux and accumulation functions are
determined from the dynamics of the simulation. Equa-
tion (10) decomposes the accumulation rate into the
product of two parts: a, which is influenced only by the
instantaneous shape of the aggregate, and ® which can
be related to the dynamical processes which provide the
evolution of the aggregate. By introducing the flux func-
tion, we provide the machinery to isolate the dynamics of
the simulation, and to draw a clear electrostatic analog.
We hope that this work will provide some of the tools
necessary to more thoroughly understand the complex
processes involved in fractal growth.
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